Sabtu, 27 Januari 2018

REAKSI SUBSTITUSI NUKLEOFILIK




REAKSI SUBSTITUSI NUKLEOFILIK
Sebelum membahas tentang reaksi nukleofilik, saya akan menjelaskan sedikit tentang reaksi substitusi terlebih dahulu.
REAKSI SUBSTITUSI
            Reaksi substitusi adalah reaksi penggantian atom atau gugus atom oleh atom atau gugus atom lain. Jadi dalam reaksi substutisu suatu atom atau gugus atom yang terdapat dalam rantai utama akan meninggalkan rantai utama tersebut dan tempatnya yang kosong akan diganti oleh atom atau gugus atom yang lain. Berdasarkan pereaksi yang yang dipergunakan, reaksi substitusi dapat dibedakan menjadi (a) reaksi substitusi radikal bebas; (b) reaksi substitusi nukleofilik; dan (c) reaksi substitusi elektrofilik.
            Reaksi substitusi adalah reaksi penggantian atom senyawa hidrokarbon oleh atom senyawa lain. Reaksi substitusi pada umumnya terjadi pada senyawa jenuh (alkana). Alkana dapat mengalami reaksi substitusi dengan halogen. Reaksi substitusi juga dapat diartikan sebagai  reaksi dimana berlangsung penggantian ikatan kovalen pada suatu atom karbon. Reagensia pengganti dan gugus lepas yang meninggalkan substrat dapat berupa nukleofil atau elektrofil (atau radikal bebas). Secara umum, reaksinya dapat dinyatakan sebagai berikut:       Reaksi secara umum:
R - H    +    X2  →  R – X     +    H – X
Alkana     halogen         haloalkana    asam klorida
·         Contoh:
CH3-CH3 (g) + Cl2 (g)  →  CH3-CH2-Cl (g)  +  HCl (g)
Etana             gas klor            kloroetana         asam klorida
1. Reaksi Substitusi Radikal BebasReaksi substitusi radikal bebas terjadi apabila gugus yang mengganti adalah radikal bebas. Pereaksi radikal bebas adalah atom atau gugus atom yang mengandung sebuah elektron yang tidak berpasangan. Pereaksi radikal bebas umumnya digunakan pada reaksi yang menyebabkan pemutusan homolitik dari substrat. Reaksi ini dimulai dengan pembentukan radikal bebas yang reaktif. Radikal tersebut beresaksi dengan molekul lain membentuk radikal bebas baru yang meneruskan reaksi berikutnya. Contoh reaksi substitusi radikal bebas adalah reaksi antara metana dengan gas klor mengasilkan monoklor-metana dan asam klorida.


2. Reaksi substitusi elektrofilik
                 Reaksi substitusi elektrofilik merupakan reaksi pergantian elektrofil. Elektrofil merupakan kebalikan dari nukleofil. Elektrofil merupakan spesi yang tertarik pada muatan negatif. Jadi elektrofil merupakan suatu asam Lewis. Pada umumnya reaksi substitusi elektrofilik yang disubstitusi adalah H+ atau asam Lewis. Reaksi SE dapat terjadi pada senyawa benzena atau benzena tersubstitusi. Contoh reaksi SE benzena, meliputi: nitrasi, sulfonasi, halogenasi, alkilasi, asilasi, reaksi substitusi elektrofilik substituen EDG benzena monosubstitusi, reaksi substitusi elektrofilik substituen EWG benzena monosubstitusi dan reaksi substitusi elektrofilik benzena disubstitusi.
3.  Reaksi Substitusi Nukleofilik
            Reaksi substitusi nukleofilik terjadi apabila gugus yang mengganti merupakan pereaksi nukleofil. Contoh reaksi substitusi nukleofilik adalah reaksi antara etanol dengan asam bromida menghasilkan etil-bromida.

                                               
            Reaksi Substitusi Nukleofilik Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikathalogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. 

2. Mekanisme Reaksi Substitusi Nukleofilik Pada dasarnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adan SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian. A. 

           Nukleofil menyerang dari belakang ikatan C-X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan elektron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi.
Adapun ciri reaksi SN2 adalah:
1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut.
2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi.
3. Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.
B. Reaksi SN1 Mekanisme SN1 dalah proses dua tahap. Pada tahap pertama, ikatan antarakarbon dengan gugus pergi putus.


Gugus pergi terlepas dengan membawa pasangan elektron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk


            Pada mekanisme SN1, substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil.
Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:
1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.
2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik.



X yang melalui mekanisme SN1 akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3oSpesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan adalah campuran rasemik Reaksi substrat R > 2o >> 1o.

PERMASALAHAN :
1.Bagaimana perbandingan mekanisme substitusi SN1dan SN2 dengan keadaan-keadaan lain, seperti keadan pelarut, struktur, dan nukleofil secara spesifik ?
2. Mengapa  laju reaksi dari reaksi SN1 hanya dipengaruhi oleh konsentrasi
pereaksinya saja ? tolong berikan alasannya...
3. Bagaimana urutan berikut ini dapat terjadi : Tersier > sekunder (lambat), Halida anilik dan benzyl halida pada reaksi nukleofilik bimolekuler SN












PEMBENTUKAN STRUKTUR SEKUNDER DAN TERSIER PADA PROTEIN

q   Kata protein berasal dari kata Yunani, proteios yang berarti pertama. q   Dalam kehidupan sehari-hari, protein terd...