Sabtu, 03 Februari 2018

ELIMINASI PADA ALKIL HALIDA DAN ALKOHOL

              eliminasi pada alkil halida dan alkohol



Eliminasi adalah jalur alternatif ke substitusi. Berlawanan dengan reaksi adisi dan menghasilkan alkena. Eliminasi dapat berkompetisi dengan substitusi dan menurunkan jumlah produk, khususnya untuk SN1.

Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.

Halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan ) terbentuk di antara karbon-karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.
Seringkali reaksi substitusi dan eliminasi terjadi secara bersamaan pada pasangan pereaksi nukleofil dan substrat yang sama. Reaksi mana yang dominan, bergantung pada kekuatan nukleofil, struktur substrat, dan kondisi reaksi. Seperti halnya dengan reaksi substitusi, reaksi elimanasi juga mempunyai dua mekanisme, yaitu mekanisme E2 dan E1.


Aturan Zaitsev untuk reaksi Eliminasi
Pada eliminasi HX dari alkil halida, produk alkena yang lebih tersubstitusi adalah produk yang dominan.



Mekanisme E2
Reaksi adalah bimolekul, V tergantung pada konsentrasi RX dan B
V = k[RX][B]
\ Tahap penentu laju reaksi melibatkan konsentrasi B
reactivity:         RI > RBr > RCl > RF
\ Tahap penentu laju reaksi melibatkan pemutusan ikatan R—X
(Reaksi tidak tergantung pada jenis RX apakah 1º, 2º, atau 3º)

Reaksi E2 adalah proses satu tahap. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.

Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan  baru.

Mekanisme E1
Mekanisme E1 mempunyai tahap awal yang sama dengan mekanisme SN1. Tahap lambat atau penentuan ialah tahap ionisasi dari substrat yang menghasilkan ion karbonium.

Kemudian, ada dua kemungkinan reaksi untuk ion karbonium. Ion bisa bergabung dengan nukleofil (proses SN1) atau atom karbon bersebelahan dengan ion karbonium melepaskan protonnya, sebagaimana ditunjukkan dengan panah lengkung, dan memebentuk alkena (proses E1).
 

Perbandingan E1 dan E2
·          Basa kuat dibutuhkan untuk E2 tapi tidak untuk E1
·          E2 stereospesifik, E1 tidak
·          E1 menghasilkan orientasi Zaitse



PERSAINGAN SUBSTITUSI DAN ELIMINASI
Ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan
dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat
dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan
dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika
dibandingkan dengan SN1 dan E1.
            Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana.
Kedua proses dapat terjadi.
Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi.
Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi.



Jadi, bagaimana kita mengubah butil bromida tersier menjadi alkoholnya? Kita tidak menggunakan ion hidroksida, melainkan air. Air merupakan basa yang lebih lemah daripada ion hidroksida, sehingga reaksi E2 ditekan. Air juga merupakan pelarut polar, yang menguntungkan mekanisme ionisasi. Dalam hal ini, E1 tidak dapat dihindari sebab persaingan antara E1 dan SN1 cukup berat. Hasil utama adalah hasil subtitusi (80%), tetapi eliminasi masih terjadi (20%).
 Ringkasannya, halida tersier bereaksi dengan basa kuat dalam pelarut nonpolar memberikan eliminasi (E2), bukan subtitusi. Dengan basa lemah dan nukleofil lemah, dan dalam pelarut polar, halida tersier memberikan hasil utama subtitusi (SN1), tetapi sedikit eliminasi (E1) juga terjadi. Halida primer bereaksi hanya melalui mekanisme-mekanisme SN2 dan E2, karena mereka tidak terionisasi menjadi ion karbonium. Halida sekunder menempati kedudukan pertengahan, dan mekanisme yang terjadi sangat dipengaruhi oleh keadaan reaksi. 

MEKANISME TERJADINYA ELIMINASI PADA ALKOHOL

Alkohol pada umumnya mengalami reaksi eliminasi jika dipanaskan dengan katalis asam kuat, misalnya H2SO4 atau asam Fosfat (H3PO4) untuk menghasilkan alkena dan air. Asam sulfat pekat akan menimbulkan banyak reaksi sampingan. Katalis ini mengoksidasi beberapa alkohol menjadi karbon dioksida dan disaat  yang sama tereduksi dengan sendirinya menjadi sulfur oksida. Gugus hidroksil bukan merupakan gugus pergi yang baik, akan tetapi di bawah kondisi asam, gugus hidroksil dapat diprotonasi. Ionisasi akan menghasilkan suatu molekul air dan kation , yang selanjutnya dapat mengalami deprotonasi untuk memberikan alkena. Dehidrasi alkohol sekunder dan tersier adalah reaksi eliminasi 1 yang melibatkan pembentukan karbokation, sedangkan dehidrasi alkohol primer adalah reaksi eliminasi 2. Suatu reaksi E2 terjadi pada satu tahap, yaitu tahap pertama asam akan memprotonasi oksigen dari alkohol, proton diambil oleh basa (H2SO4) dan secara simultan membentuk ikatan rangkap karbokation (C=C) melalui hilangnya molekul air.
Reaksi eliminasi alkohol menjadi alkena dapat juga disebut dehidrasi, karna adanya pelepasan H20. Dehidrasi alkohol sekunder dan alkohol tersier adalah reaksi E1 (eliminasi 1) yang melibatkan pembentukan karbokation, sedangkan dehidrasi alkohol primer adalah reaksi E2 (eliminasi 2) dimana hanya terjadi satu tahap, yaitu tahap pertama asam akan memprotonasi oksigen dari alkohol, proton diserang oleh basa dan membentuk ikatan rangkap karbon-karbon (C=C) melalui lepasnya molekul air. Perbedaan mekanisme reaksi tersebut disebabkan oleh mudah tidaknya pelepasan H20 setelah diprotonasi, dengan kata lain tergantung pada kestabilan ion karbokation yang terbentuk


 Permasalahan “
1. Pada produk eliminasi mengikuti aturan zeitsev, dimana alkena yang lebih stabil akan dihasilkan lebih banyak dibandingkan dengan alkena yang kurang stabil. Mengapa hal demikian dapat terjadi?
 2.Bagaimana perbandingan mekanisme substitusi SN1dan SN2 dengan keadaan-keadaan lain, seperti keadan pelarut, struktur, dan nukleofil secara spesifik
 3.Selain karna sama sama menggunakan reaksi intermediet karbokation adakah lagi kemiripan antara reaksi E1 dengan reaksi SN1?



3 komentar:

  1. Baiklah sya mencoba mnjawab permasalahnanda yang no.3 kemiripan lain antara reaksi E1 dengan reaksi SN1:
    1. Memiliki hasil antara sama
    (karbokation)
    2. Faktor-faktor yang menguntungkan
    kedua reaksi:
    - substrat yang dapat membentuk
    karbokation yang stabil
    - pemakaian Nu (basa) yang lemah
    - pemakaian pelarut polar

    BalasHapus
  2. Saya akan menjawab pertanyaan diatas yaitu nomor 1
    Jawab:
    Dari peryataan zaitsev sendiri yaitu alkena terbentuk denagn jumlah lebih besar pada salah satu yang sesai dengan lepasnya hydrogen di β-carbon yang memiliki jmlah substiten hydrogen yang lebih sedikit. Halini terjadi karena adanya efek sterik (hal ini karena adanya gugus yang cukup besar yang berdekatan dengan atom c yang reaktif), adanya stereokimia yang dapat menghalangi untuk terbentuknya zaitsev produk.

    BalasHapus
  3. Saya akan mencoba menjawab permasalahan No.2
    perbandingan mekanisme SN1 dan SN2 menurut literatur yang saya baca adalah pada struktur halida primer mekanisme SN2 terjadi, sedangkan mekanisme SN1 tidak terjadi, pada struktur halida sekuder mekanisme SN1 dan SN2 kadang kadang terjadi, pada struktur halida tertier mekanisme SN2 tidak terjadi sedangkan mekanisme SN1 terjadi. selanjutnya pada nukleofil, pada mekanisme SN2 mekanisme reaksi tergantung pada konsentrasi nukleofil,sedangkan pada mekanisme SN1 mekanisme reaksi tidak tergantung pada konsentrasi nukleofil. terakhir berdasarkan pelarut pada mekanisme SN2 kecepatan reaksi sedikit dipengaruhi oleh kepolaran pelarut, sedangkan pada mekanisme SN1 kecepatan reaksi sangat dipengaruhi oleh kepolaran pelarut.





    BalasHapus

PEMBENTUKAN STRUKTUR SEKUNDER DAN TERSIER PADA PROTEIN

q   Kata protein berasal dari kata Yunani, proteios yang berarti pertama. q   Dalam kehidupan sehari-hari, protein terd...