Sabtu, 24 Februari 2018

pembentukan dan reaktifitas senyawa organomelatik (organologam)



Senyawa organologam adalah senyawa di mana atom-atom karbon dari gugus organik terikat kepada atom logam. Contoh, suatu aloksida seperti (C3H7O)4Ti tidaklah dianggap sebagai suatu senyawa organologam karena gugus organiknya terikat pada Ti melalui oksigen, sedangkan C6H5Ti(OC3H7)3 karena terdapat satu ikatan langsung antara karbon C dari gugus fenil dengan logam Ti.HH Istilah organologam biasanya didefenisikan agak longgar, dan senyawaan dari unsur-unsur seperti Boron, fosfor, dan silikon semuanya mirip logam.Tetapi untuk senyawa yang mengandung ikatan antara atom logam dengan oksigen, belerang, nitrogen, ataupun dengan suatu halogen tidak termasuk sebagai senyawa organologam. Dari bentuk ikatan pada senyawa organologam, senyawa ini dapat dikatakan sebagai jembatan antara kimia organik dan anorganik.
Sifat senyawa organologam yang umum ialah atom karbon yang lebih elektronegatif daripada kebanyakan logamnya. Senyawa komplek logam (biasanya logam-logam transisi) merupakan senyawa yang memiliki satu atau lebih ikatan logam-karbon. Senyawa organologam terdiri dari atom pusat dan ligan (Blaser et al, 2000).
            Terdapat beberapa kecenderungan jenis-jenis ikatan yang terbentuk pada senyawaan organologam:
a.       Senyawaan ionik dari logam elektropositif

Senyawaan organo dari logam yang relatif sangat elektropositif umumnya bersifat ionik, tidak larut dalam pelarut organik, dan sangat reaktif terhadap udara dan air. Senyawa ini terbentuk bila suatu radikal pada logam terikat pada logam dengan keelektropositifan yang sangat tinggi, misalnya logam alkali atau alkali tanah. Kestabilan dan kereaktifan senyawaan ionik ditentukan dalam satu bagian oleh kestabilan ion karbon. Garam logam ion-ion karbon yang kestabilannya diperkuat oleh delokalisasi elektron lebih stabil walaupun masih relatif reaktif. Adapun contoh gugus organik dalam garam-garaman tersebut seperti (C6H5)3C-Na+ dan (C5H5)2Ca2+.
b.      Senyawaan yang memiliki ikatan -σ (sigma)
Senyawaan organologam  dimana sisa organiknya terikat pada suatu atom logam dengan suatu ikatan yang digolongkan sebagai ikatan kovalen (walaupun masih ada karakter-karakter ionik dari senyawaan ini) yang dibentuk oleh kebanyakan logam dengan keelektropositifan yang relatif lebih rendah dari golongan pertama di atas, dan sehubungan dengan beberapa faktor berikut:
1.      Kemungkinan penggunaan orbital d yang lebih tinggi, seperti pada SiR4 yang tidak tampak dalam CR4.
2.      Kemampuan donor alkil atau aril dengan pasangan elektron menyendiri.
3.      Keasaman Lewis sehubungan dengan kulit valensi yang tidak penuh seperti ada BR2 atau koordinasi tak jenuh seperti ZnR2.
4.      Pengaruh perbedaan keelektronegatifan antara ikatan logam-karbon (M-C) atau karbon-karbon (C-C).
c.       Senyawaan yang terikat secara nonklasik
Dalam banyak senyawaan organologam terdapat suatu jenis ikatan logam pada karbon yang tidak dapat dijelaskan dalam bentuk ionik atau pasangan elektron/kovalensi. Misalnya, salah satu kelas alkil terdiri dari Li, Be, dan Al yang memiliki gugus-gugus alkil berjembatan. Dalam hal ini, terdapat atom yang memiliki sifat kekurangan elektron seperti atom Boron pada B(CH3)3. Atom B termasuk atom golongan IIIA, dimana memiliki 3 elektron valensi, sehingga cukup sulit untuk membentuk konfigurasi oktet dalam senyawaannya.
2.2 Konsep dasar Organologam dan Reaksi-reaksi Pembentukan Organologam
            Pada dasarnya Organologam prinsipnya yaitu atom-atom Karbon dari gugus organik terikat kepada atom logam. Konsep ini yang mendasari Organologam, sehingga banyak cara untuk menghasilkan ikatan-ikatan logam pada Carbon yang berguna bagi kedua logam transisi dan non-transisi. Beberapa yang lebih penting adalah sebagai berikut:
1.      Reaksi Logam langsung ; sintesis yang paling awal oleh ahli kimia Inggris, Frankland  dalam tahun 1845 adalah interaksi antara Zn dan suatu alkil Halida. Adapun yang lebih berguna adalah penemuan ahli kimia Perancis, Grignard yang dikenal sebagai pereaksi Grignard. Contohnya interaksi Magnesium dan alkil atau aril Halida dalam eter:
Mg + CH3I → CH3MgI
Interaksi langsung alkil atau aril Halida juga terjadi dengan Li, Na, K, Ca, Zn dan Cd.
2.      Penggunaan zat pengalkilasi. Senyawa ini dimanfaatkan untuk membuat senyawa organologam lainnya. Kebanyakan Halida nonlogam dan logam atau turunan Halida dapat dialkilasi dalam eter atau pelarut hidrokarbon, misalnya :
PCl3 + 3C6H5MgCl  → P(C6H5)3 + 3MgCl2
VOCl3 + 3(CH3)3SiCH2MgCl → VO(CH2SiMe3)+ 3MgCl2
3.      Interaksi Hidrida Logam atau nonlogam dengan alkena atau alkuna.
4.      Reaksi Oksidatif adisi. Reaksi yang dikenal sebagai reaksi Oksa dimana Alkil atau Aril Halida ditambahkan pada senyawa logam transisi Koordinasi tidak jenuh menghasilkan ikatan logam Karbon. Contohnya:
RhCl(PPh3)3 + CH3I → RhClI(CH3)(PPh3)2 + PPh3
5.      Reaksi Insersi yaitu reaksi yang menghasilkan ikatan-ikatan dengan Karbon, sebagai contoh:
SbCl5 + 2HC  CH→Cl3Sb(CH=CHCl)2
Atom pusat dari suatu senyawa kompleks yang digunakan antara lain logam-logam transisi deret pertama seperti: Cr, Mn, Fe, Co, Ni, Cu, dan Zn (HIjazi et al, 2008). Ligan dari suatu senyawa komplek dapat mempengaruhi bentuk geometri dari senyawa organologam itu sendiri sehingga dapat dimanfaatkan dalam berbagai reaksi kimia. Tabel 1 menjelaskan tentang perbedaan jenis ligan yang terikat pada atom pusat, dimana memberikan bentuk geometri yang berbeda dan perbedaan reaksi yang mampu dikatalisisnya.
Reaksi Grignard
Reaksi Grignard adalah reaksi kimia organologam di mana alkil - atau Aril-magnesium halides (reagen Grignard) menambah gugus karbonil Aldehida atau keton. Reaksi ini adalah alat penting untuk pembentukan ikatan antar karbon. Reaksi Halida organik dengan magnesium bukan reaksi Grignard, tetapi menyediakan peraksi Grignard. Pereaksi Grignard memiliki rumus umum RMgX dimana X adalah sebuah halogen, dan R adalah sebuah gugus alkil atau aril (berdasarkan pada sebuah cincin benzen). Pereaksi Grignard sederhana bisa berupa CH3CH2MgBr.

MEKANISME REAKSI
 Reagen Grignard berfungsi sebagai nukleofil, menyerang atom karbon elektrofilik yang hadir dalam ikatan polar gugus karbonil. Penambahan pereaksi Grignard untuk karbonil biasanya hasil melalui keadaan transisi enam-beranggota cincin.
Mekanisme dari reaksi Grignard:

Namun, dengan pereaksi Grignard terhalang, reaksi dapat melanjutkan dengan transfer elektron tunggal. Jalur serupa diasumsikan untuk reaksi lain dari reagen Grignard, misalnya, dalam pembentukan ikatan antara karbon-fosfor, timah-karbon, karbon-silikon, boron-karbon dan karbon-heteroatom.

REAKSI-REAKSI DARI PEREAKSI GRIGNARD
Reaksi pereaksi Grignard dengan senyawa-senyawa karbonil
Reaksi antara berbagai macam senyawa karbonil dengan pereaksi Grignard bisa terlihat sedikit rumit, walaupun pada kenyataannya semua senyawa karbonil bereaksi dengan cara yang sama – yang berbeda hanyalah gugus-gugus yang terikat pada ikatan rangkap C=O.


Apa yang terjadi pada reaksi ini jauh lebih mudah dipahami dengan mencermati persamaan umumnya (menggunakan gugus "R" bukan gugus tertentu) – setelah anda memahami dengan gugus R barulah bisa diganti dengan gugus yang sesungguhnya jika diperlukan.
Reaksi-reaksi yang terjadi pada dasarnya sama untuk reaksi dengan karbon dioksida – yang membedakan hanya sifat-sifat produk organiknya.
Pada tahap pertama, pereaksi Grignard diadisi ke ikatan rangkap C=O:

Asam encer selanjutnya ditambahkan untuk menghidrolisisnya. (Pada persamaan berikut digunakan persamaan umum dengan tidak mempertimbangkan fakta bahwa Mg(OH)Br akan bereaksi lebih lanjut dengan asam yang ditambahkan.)


Alkohol terbentuk. Salah satu kegunaan penting dari pereaksi Grignard adalah kemampuannya untuk membuat alkohol-alkohol kompleks dengan mudah. Jenis alkohol yang dihasilkan tergantung pada senyawa karbonil yang digunakan – dengan kata lain, gugus R dan R’ yang dimiliki.





Permasalahan:
1.Apa saja kegunaan organologam dalam kehidupan sehari-hari?
2. ikatan apa saja yang terjadi pada senyawa organologam?
3.jenis ikatan apa saja yang terjadi pada senyawa organologam?










4 komentar:

  1. Anonim03.08.00

    nama saya dolla mulyanaharnas dengan nim A1C116080 akan mencoba menjawab nomor 2

    • 2.Ikatanionik. Ikatanionikorganologamterbentukdariunsur yang sangatelektropositif
    yaituunsurpadagolongan I, II, dan III. Organologamdengan yang berikatansecaraionikbersifattaklarutdalampelaruthidrokarbondanmudahteroksidasi.
    • Ikatankovalen. Ikatankovalenorganologam yangmudahmenguapterbentukdarilogam Zn, Cd, Hg, danlogam non-transisigologan III (kecualialuminium), IV, dan V. Ikatankovaleniniterbentukdengancaramemberikansatuelektrontunggalnya, baikdarilogammaupununsurorganiknya, untukdipakaisecarabersama. Sifatdarisenyawaorganologamdenganikatankovaleninimudahmenguap, larutdalampelarutorganik, dantidaklarutdalam air.

    BalasHapus
  2. Saya Demiati akan menajwab pertanyaan no.1 yang mana kegunaan atau peran senyawa organologam dalam kehidupan sehari -hari yaitu peran dalam bidang kesehatan, banyak sekali aplikasi pemanfaatan senyawa organologam di bidang kesehatan salah satunya adalah Haemoglobin. Haemoglobin (Hb) merupakan senyawa metalloprotein yang berperan mengantarkan Oksigen ke seluruh tubuh, Haemoglobin juga berperan dalam proses transportasi gas lain seperti karbondioksida.

    Secara susunan kimia Haemoglobin merupakan senyawa yang memiliki unsur logam (Fe) dan senyawa organik (Protein). Unsur Besi yang mengikat protein juga mampu mengikat ligan lain, diantaranya Oksigen dan Karbon dioksida dengan Fe sebagai logam. Senyawa tersebut dalam ikatan haemoglobin membentuk ikatan kordinasi sehingga membentuk senyawa kompleks organologam.

    Selain itu berperan organically organic light-emitting diode (OLED) sebagai material baru yang diperkenalkan dalam tampilan ponsel, OLED merupakan senyawa Iridium organologam.

    dan dalam bentuk solid-state senyawa ini berperan sebagai pemancar cahaya sel elektrokimia (LEC).

    BalasHapus
  3. Baiklah, saya desi ratna sari akan menjawab permasalahan nomor 3. Terdapat beberapa kecenderungan jenis-jenis ikatan yang terbentuk pada senyawaan organologam:

    a. Senyawaan ionik dari logam elektropositif

    Garam logam ion-ion karbon yang kestabilannya diperkuat oleh delokalisasi elektron lebih stabil walaupun masih relatif reaktif. Adapun contoh gugus organik dalam garam-garaman tersebut seperti (C6H5)3C-Na+ dan (C5H5)2Ca2+.
    b. Senyawaan yang memiliki ikatan -σ (sigma)

    Senyawaan organologam dimana sisa organiknya terikat pada suatu atom logam dengan suatu ikatan yang digolongkan sebagai ikatan kovalen (walaupun masih ada karakter-karakter ionik dari senyawaan ini) yang dibentuk oleh kebanyakan logam dengan keelektropositifan yang relatif lebih rendah dari golongan pertama di atas,

    BalasHapus
  4. Baiklah, saya desi ratna sari akan menjawab permasalahan nomor 3. Terdapat beberapa kecenderungan jenis-jenis ikatan yang terbentuk pada senyawaan organologam:

    a. Senyawaan ionik dari logam elektropositif

    Garam logam ion-ion karbon yang kestabilannya diperkuat oleh delokalisasi elektron lebih stabil walaupun masih relatif reaktif. Adapun contoh gugus organik dalam garam-garaman tersebut seperti (C6H5)3C-Na+ dan (C5H5)2Ca2+.
    b. Senyawaan yang memiliki ikatan -σ (sigma)

    Senyawaan organologam dimana sisa organiknya terikat pada suatu atom logam dengan suatu ikatan yang digolongkan sebagai ikatan kovalen (walaupun masih ada karakter-karakter ionik dari senyawaan ini) yang dibentuk oleh kebanyakan logam dengan keelektropositifan yang relatif lebih rendah dari golongan pertama di atas,

    BalasHapus

PEMBENTUKAN STRUKTUR SEKUNDER DAN TERSIER PADA PROTEIN

q   Kata protein berasal dari kata Yunani, proteios yang berarti pertama. q   Dalam kehidupan sehari-hari, protein terd...